

解决方案 植物源性食品中联苯菊酯的测定

关键字

全自动固相萃取; GC-MS; 联苯菊酯

介绍

联苯菊酯(Bifenthrin,BF),又名氟氯菊酯,是拟除虫菊酯类农药。BF是上世纪80年代初开发的一种新型杀虫剂和杀螨剂,具有强大的胃毒和触杀作用,主要用于棉花、蔬菜、茶树等害虫的防治,但由于其对光和热稳定,不易分解,因此会引起环境和食品安全问题,给人类的健康带来危害。

本文参考SNT1969-2007《进出口食品中联苯菊酯残留量的检测方法 气相色谱-质谱法》,使用睿科全自动固相萃取仪对西芹、苹果、蘑菇、大米中联苯菊酯进行净化萃取,为联苯菊酯的测定提供了一种简单便捷的前处理方法,同时采用气相色谱-质谱法进行检测和验证,具有较好的灵敏度、准确度和重现性。

1. 仪器、试剂以及耗材

仪器

Raykol Fotector 08HT 高通量全自动固相萃取仪

Raykol Auto Prep 200 全自动液体样品处理 工作站

耗材

弗罗里硅土柱(RayCure Florisil, 1g/6 mL, RC-204-16945)

试剂

正己烷: HPLC级

丙酮: HPLC级

乙醚: HPLC 级

联苯菊酯标准储备液: 100 μg/mL,正己烷 联苯菊酯基质工作溶液:

使用 Auto Prep 200 全自动液体样品处理工作站可进行联苯菊酯标准工作溶液的配制。将联苯菊酯标准储备液(100 μ g/mL)通过工作站的有机配液模块进行配制:储备液先直接稀释到 1 μ g/mL 的中间使用液,再通过中间液配制一条质量浓度分别为 0.0 μ g/L,10.0 μ g/L,20.0 μ g/L,50.0 μ g/L,100.0 μ g/L、200.0 μ g/L

Raykol MPE 高通量真空平行浓缩仪
Raykol AutoEVA-60 全自动平行浓缩仪

GC-MS, Agilent 7890A/7000D 气相色谱/质谱联用仪

Agilent DB-5MS (30 m * 250 μ m * 0.25 μ m)

的标准工作曲线。具体配制方法如图-1 所示。

空白基质溶液用 AutoEVA-60 全自动平行浓缩仪氮吹干后,分别加入 1 mL 上述混合标准工作溶液复溶,过 0.22 μm 的微孔滤膜配制成系列基质工作溶液,供气相色谱-质谱联用仪测定。

图-1 Auto Prep 200 联苯菊酯溶液配制方法

2. 样品前处理

提取

大米

西芹、苹果和蘑菇

称取 5 g 试样 (精确至 0.01 g) 于 50 mL 塑料离心管中,准确加入 15 mL 正己烷-丙酮 (1:1, V:V) 混合溶液,在 10000 r/min 均质 0.5 min,加入 4 g 氯化钠混匀后,再于 4000 r/min 转速下离心 3 min,吸取上层有机相于 50 mL 浓缩杯中,

称取 2 g 试样 (精确至 0.01 g) 于 50 mL 离心管中,加入 2 g 氯化钠和 6 mL 水,涡旋混匀 1 min,静置 30 min,准确加入 10 mL 正己烷-丙酮 (1:1, V:V)混合溶液,以 10000 r/min 均质 0.5

残渣再加入 15 mL 正己烷-丙酮 (1:1, V:V) 混合溶液重复提取一次,合并上层有机相,在 MPE 真空平行浓缩仪中浓缩至近干,准确加入 5 mL 正己烷,待净化。

min,于 4000 r/min 转速下离心 3 min,吸取上层有机相于 50 ml 浓缩杯中,残渣再加入 10 ml 正己烷-丙酮 (1:1, V:V) 混合溶液重复提取一次,合并上层有机相,在 MPE 真空平行浓缩仪中浓缩

至近干,准确加入2 mL 正己烷,待净化。

步骤	目标真空值	持续时间(hh:mm:ss)	
1	600 mbar	00:01:00	
2	500 mbar	00:01:00	
3	490 mbar	00:01:00	
4	480 mbar	00:01:00	
5	470 mbar	00:01:00	
6	460 mbar	00:01:00	
7	45 0 mbar	00:01:00	
8	43 0 mbar	00:xx:xx	

图-2 MPE 浓缩方法

净化

净化过程采用弗罗里硅土柱(1g/6 mL)进行富集净化,具体方法如下:

清洗样品通道:用正己烷-丙酮(1:1, V:V) 清洗:

活化: 在小柱上方装填约 1 cm 高的无水硫酸钠,用 5 mL 正己烷混合溶液进行活化;

上样: 采用 1 mL/min 的流速进行上样 1 mL;

淋洗: 采用正己烷淋洗小柱;

洗脱:用正己烷-乙醚(95:5,V:V)混合溶液进行洗脱,收集溶液;

气推:将柱子里溶液进行气推,收集溶液。 将收集液用 Auto EVA-60 氮吹至近干,用正 己烷定容 1 mL,混匀后过 0.22 μm 滤膜用气质检

测。详细的前处理步骤如图-3。

序号	命令	溶剂	排出	流速 (mL/min)	体积 (mL)	时间 (min)
1	清洗样品通道	正己烷: 丙酮 (1:1)				2.8
2	活化	正己烷	有机废液	5	5	1.5
3	上样		有机废液	1	1	1.4
4	清洗样品瓶	正己烷	有机废液	60	3	3.9
5	淋洗	正己烷	有机废液	5	5	1.5
6	洗脱	正己烷: 乙醚 (95:5)	收集	1	5	5.5
7	气推		收集	20	2	0.5
8	结束					

图-3 Fotector 08HT 联苯菊酯固相萃取方法

3. 检测条件

气相色谱质谱联用条件

采用 SCAN 全扫描模式进行定性分析, SIM 选择离子模式进行定量分析。GC-MS 检测条件:

进样口温度 270 ℃,不分流进样,隔垫吹扫流量为 3 mL/min,进样量 2.0 μL;

载气为高纯 He 气, 恒流模式, 流速为 1.0 mL/min;

气质联用谱图

电子轰击电离源(EI),离子源温度 280 ℃,接口(传输线)温度 280 ℃。

升温程序:初温 60 ℃保持 2 min,以 15 ℃/min 升温到 150 ℃保持 11 min,再以 10 ℃/min 升温到 220 ℃,以 20 ℃/min 升温到 300 ℃保持 5 min。

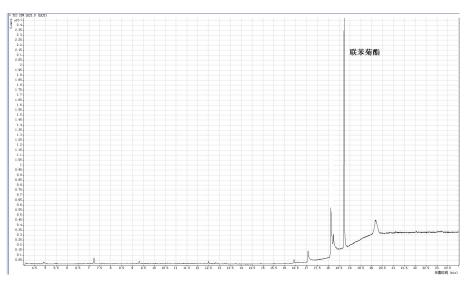


图-4 联苯菊酯 TIC 图 (100 µg/L)

4. 样品测试

基质标准工作曲线

选择定量离子的峰面积作为纵坐标,浓度作为横坐标,做相关曲线,曲线为线性回归,各点

基质加标回收实验

取西芹、苹果、蘑菇和大米4种样品,在低、中、高3个加标水平下对联苯菊酯进行样品加标

权重相等,拟合出工作曲线,要求 R²>0.99;此曲 线两周需要重新配制一次。

回收验证,回收率和 RSD 结果见下表-1。

检测项目	基质	加标水平(mg/kg)	回收率(%)	相对标准偏差(%)
腐霉利	西芹	0.02	84. 8-98. 7	4.3
		0.04	82. 3-95. 4	5. 1
		0.10	87. 7-103. 1	1.6
	苹果	0.02	89. 4-100. 9	4.7
		0.04	94. 6-97. 4	2.6
		0.10	93. 6-112. 7	2.4
肉母们	蘑菇	0.02	82. 1-88. 7	3.7
		0.04	80. 9-106. 1	8.2
		0.10	85. 0-97. 1	3.9
	大米	0.02	76. 5-96. 1	2.2
		0.04	74. 6-105. 0	4.8
		0.10	87. 7-101. 9	1.9

表-1 回收率和相对标准偏差(n=4)

5. 总结

由于联苯菊酯的极性较弱,在弗罗里硅土小柱上的保留不强,因此选择正己烷清洗样品瓶和淋洗小柱,尽可能用正己烷将非极性杂质除去后再用正己烷+乙醚(95+5)洗脱。

本方法采用 MPE 高通量真空平行浓缩仪对提取液进行浓缩,在精准的真空控制和水浴加热模式下,实现批量样液的快速平行浓缩;对预浓缩后的样液采用全自动固相萃取仪进行净化,萃取

过程从活化、上样、淋洗、洗脱等步骤实现自动 化,从而达到对试样中联苯菊酯简便高效的富集 净化:

再使用 AutoEVA-60 全自动浓缩仪进一步氮 吹浓缩洗脱液, 氮吹针自动跟随随液面的高度, 加快浓缩效率, 节约氮气成本;

最后搭配 Auto Prep 200 全自动液体样品处

理工作站,可以协助实验员进行自动化配制标准工作曲线,且避免高浓度有机物的危害。

本实验为食品中联苯菊酯的测定提供高效便捷、自动化的解决方案,真正为批量样品的前处理提供帮助,同时获得较好的加标回收率和相对标准偏差,回收率在74.6~112.7%,相对标准偏差在1.6~8.2%。

高通量真空平行浓缩仪 预浓缩

全自动平行浓缩仪 浓缩

全自动液体样品处理工作站 标曲配制

自动化样品前处理解决方案领先供应商

网址: www.raykol.com 电话: 400-885-1816 邮箱: info@raykol.com

