

解决方案 水中微囊藻毒素的测定

关键词

全自动固相萃取; 高校液相色谱-串联质谱; 微囊藻毒素

介绍

随着工业化进程的加快,人类在工农业生产过程中,向水体排入大量的含氮、磷的污染物,加速了水体的富营养。水体富营养化的一大表现就是藻类的大量繁殖,而藻类能释放的生物毒素-藻毒素,严重危害人类和其他生物的安全。其中的微囊藻毒素LR是目前已知毒性最强、危害最大的一种淡水蓝藻毒素。它是一种肝毒素、是肝癌的促癌剂,长期饮用此水可能引发肝癌,所以对生活饮用水中的微囊藻毒素进行监测极为重要。

本文依据《GB/T 20466-2006 水中微囊藻毒素的测定》采用睿科ASPE Ultra 06全自动固相萃取仪完成水中微囊藻毒素的富集、洗脱和氮吹浓缩,再结合高校液相色谱-串联质谱进行定性定量检测。在0.1 μg/L的加标水平下,3种微囊藻毒素的回收率在84.4%-99.6%之间,RSD值小于10%,表明该方法具有操作自动化、准确度和精密度高等优点,适合饮用水和地表水中微囊藻毒素的测定。

1. 仪器与耗材

仪器和耗材

睿科 ASPE Ultra 系列全自动固相萃取仪;

睿科 Auto Prep 200 全自动液体处理工作站:

Agilent 1290+6470 三重四级杆串联质谱仪;

固相萃取柱: C₁₈ (RayCure, 500mg/6mL, 货号: RC-204-16004);

气相色谱柱: HP-5 气相色谱柱 (30m×0.25mm×0.25μm)

试剂

甲醇(HPLC); 三氟乙酸(AR); 水:超纯水,电阻率大于 $18.2 M\Omega$; 20%甲醇水溶液: 20mL 甲醇与 80 mL 水混合; 0.1 % 三氟乙酸甲醇溶液:取 0.1 mL 三氟乙酸用甲醇定容至 100 mL;

标准物质: 微囊藻毒素-LR, 微囊藻毒素-RR, 微囊藻毒素-YR 纯度不低于 95%

2. 样品前处理

标准曲线配制

将 100 μ g/L 的微囊藻毒素标准使用液取出,用 50%甲醇水作定容液,于室温平衡后用 AP200 配制成浓度为 2 μ g/L, 5 μ g/L, 10 μ g/L, 20 μ g/L,

50 μ g/L 的标准系列,也可根据仪器灵敏度或目标物浓度配制。

A盘	B盘	C盘	D盘

序号	命令	源液位	源液浓度	源液体积(mL)	目标位	目标浓度	目标体积(mL)	溶剂	洗针溶剂
1	直接稀释	A1	100000.00	1.00	A11	1000.00	1.00	正己烷丙酮3:1	正己烷丙酮3:1
2	直接稀释	A11	1000.00	1.00	A12	10.00	1.00	正己烷丙酮3:1	正己烷丙酮3:1
3	直接稀释	A12	10.00	1.00	A13	0.50	1.00	正己烷丙酮3:1	正己烷丙酮3:
4	直接稀释	A12	10.00	1.00	A14	1.00	1.00	正己烷丙酮3:1	正己烷丙酮3:1
5	直接稀释	A12	10.00	1.00	A15	5.00	1.00	正己烷丙酮3:1	正己烷丙酮3:
6	直接稀释	A11	1000.00	1.00	A16	25.00	1.00	正己烷丙酮3:1	正己烷丙酮3:
7	直接稀释	A11	1000.00	1.00	A17	100.00	1.00	正己烷丙酮3:1	正己烷丙酮3:
8	方法结束								

图-1 Auto Prep 200 的液体配标程序

样品采集与保存

采集自来水水样时,先打开自来水放水约 2 min,调节水流量至 500mL/min,用采样瓶采集水样,封好采样瓶。样品送到实验室后,加入约 40-50mg 亚硫酸钠去除余氯(在加酸调 pH 前必须脱氯),放于冰箱中 4°C 保存。样品如果有杂质,

要经过 0. 45 μm 孔径的滤膜过滤,所有样品必须 在采集后 14 天之内进行固相萃取,萃取液装于密 闭玻璃瓶,要避光并储存于 4℃以下,并在萃取后 30 天内完成分析,要求每批样品要带一个现场空 白。

样品富集与净化

的速度活化;

吸附: 取 1000mL 水样以 10mL/min 的速度通过 固相萃取柱;

淋洗: 依次用 10mL 水, 10mL 20%甲醇水溶液 淋洗固相萃取柱;

活化:分别用 10mL 甲醇和 10mL 水以 5mL/min 洗脱:用 10mL 0.1%三氟乙酸甲醇溶液洗脱固 相萃取柱;

> 浓缩: 用氮气在 40°C 的条件下将 10mL 洗脱 液浓缩至干。

具体方法参数如图-2 所示:

命令	溶剂	排出	流速 (mL/min)	体积 (mL)	时间 (min)
活化	甲醇	废溶	5	10	
活化	水	废水	5	10	
正置上样		废水	10	1020	
淋洗	水	废水	10	10	
淋洗	20%甲醇水	废溶	10	10	
气推		废水	80	20	
干燥	氮气			30	1200
清洗注射泵	0.1%三氟乙酸甲醇			5	
洗脱	0.1%三氟乙酸甲醇	收集1	1	10	
气推		收集1	10	10	
浓缩				40	1800
结束		IS.		ale.	

图-2 ASPE Ultra 06 水中微囊藻毒素的固相萃取方法

3. 检测条件

色谱条件

色谱柱: Agilent EC-C₁₈ (3.0×50 mm, 2.7 µm); 洗脱梯度: A相: 纯水; B相: 0.1%甲酸乙腈

表-1 梯度洗脱程序

时间 (min)	A(%)	B(%)
0.01	60	40
4	60	40
5	45	45
5.01	0	100
7.5	0	100
7.51	60	40
10	60	40

质谱条件

采集模式	ESI+
干燥气温度	350℃
干燥气流量	10L/min
雾化器压力	15psi
毛细管电压	4000V

监测离子参数情况见表 2:

表-2 3 种微囊藻毒素的特征离子参考质谱条件

Compound Name	Precursor Ion	Product Ion	Dwell	Fragmentor	Collision Energy
微囊藻毒素-LR	005.5	134.8*	110	60	90
	995.5	212.9	110	60	70
微囊藻毒素-YR	1045.5	135.1*	110	300	90
		212.6	110	300	80
微囊藻毒素-RR	510.9	134.8*	110	160	50
	519.8	102.9	110	160	70

总离子流图

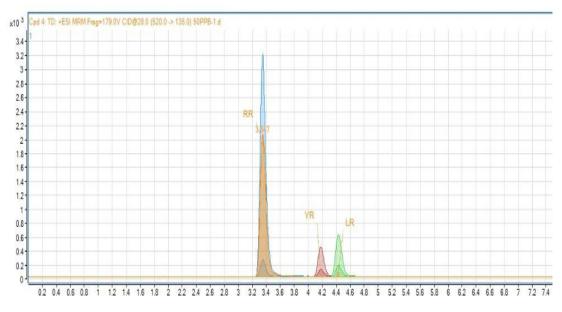


图-3 微囊藻毒素色谱图(50 µ g/L)

4. 方法可行性验证

L, 1μg/mL) 进行加标回收验证 (n=3)。在 0.1

为了验证该方法的回收率,本实验向自来水 µg/L的加标水平下,三种化合物的回收率在 (1000mL)中加入上述微囊藻毒素的标准品(100 m 84.4%-99.6%之间,相对标准偏差小于10.0%,满 足标准要求。

热线: 400-885-1816 网址: www.raykol.com 邮箱: info@raykol.com

编号	化合物名称	R ₁ (%)	R ₂ (%)	R ₃ (%)	Avg (%)	RSD (%)
1	MCs-LR	99.6	89.2	93.4	94.1	5.2
2	MCs-RR	84.4	91.6	96.4	90.8	6.1
3	MCs-YR	87.8	89.1	97.9	91.6	5.5

表-3 三种微囊藻毒素标准添加(0.1 µ g/L)回收率

5. 结果与讨论

采用三重四级杆质谱作为检测器相较于《GB/T 20466-2006 水中微囊藻毒素的测定》中的纯液相

法具有更高的方法灵敏度和更好的抗干扰能力。

6. 总结

本实验采用睿科ASPE Ultra 06全自动固相萃 仪进行水样的富集、洗脱和浓缩,整个流程自动完 成,无需过多的人工干预,并取得了比较理想的回 收率和RSD结果。采用高精度的注射泵来控制活化、 上样、淋洗和洗脱过程的流速,从而避免了手动固相萃取装置无法准确控制流速的缺点,因此确保了整个实验有较好的准确度和精密度。

全自动液体样品处理工作站 标曲配制

全自动固相萃取仪 净化

智能化、自动化实验室整体解决方案

网址: www.raykol.com 电话: 400-885-1816 邮箱: info@raykol.com

