

解决方案 水中15种硝基苯类化合物的测定

关键词

全自动固相萃取; 气相色谱; 硝基苯

介绍

硝基苯类化合物是一类重要的有机化工原料,广泛应用于杀菌剂、杀虫剂、染料、医药等。属于高毒性物质,在自然环境中很难降解,可经过呼吸道、消化道和皮肤进入人体。我国在《GB/T 14848-2017 地下水质量标准》中规定地下水将2,4-二硝基甲苯、2,6-二硝基甲苯作为特定项目进行监测。

本文参考《HJ648-2013 水质硝基苯类化合物的测定 液液萃取/固相萃取-气相色谱法》建立了采用全自动固相萃取仪富集地下水样中的15种硝基苯类化合物,避免萃取溶剂对分析人员造成健康威胁,气相色谱-电子捕获检测器(GC-ECD)检测的分析方法。在1.0 μg/L的加标水平下,15种硝基苯类化合物的回收率均在

70. 4-105. 3%之间,RSD值小于10. 0%,表明全自动固相萃取方法具有准确性好、精密度高、便于快速检测等特点,适用于地表水和地下水中硝基苯类化合物的检测。

1. 仪器与耗材

仪器和耗材

睿科 ASPE Ultra 系列全自动固相萃取仪;

睿科 Auto Prep 200 全自动液体处理工作站;

Agilent 7890B GC 气相色谱仪配电子捕获检测器;

HLB 固相萃取柱 (RayCure, 500 mg/6mL, 货号: RC-204-36477);

气相色谱柱: HP-5 气相色谱柱 (30m×0.25mm×0.25 μm)

试剂

甲醇(HPLC); 正己烷(HPLC); 丙酮(HPLC); 超纯水

2. 样品前处理

标准曲线配制

使用睿科 Auto Prep 200 全自动液体处理工作 站实现标准品的全自动化配制,可将购买的混合标 液(100mg/L)通过工作站的稀释模式,配制成浓 度为 1 mg/L 的工作中间液,通过程序设置,吸取该工作液,配制一条浓度分别为 $1.0 \mu g/L$, $5.0 \mu g/L$, $10.0 \mu g/L$, $50 \mu g/L$ 和 $100 \mu g/L$ 的标准工作曲线。

固相萃取条件

全自动固相萃取仪	睿科ASPE Ultra系列全自动固相萃取仪				
固相萃取柱	HLB 固相萃取柱(RayCure, 500mg/6mL)				
活化	正己烷、甲醇、水				
淋洗	水				
洗脱	正己烷+丙酮(3:1)				

睿科 ASPE Ultra 系列全自动固相萃取仪

样品富集与净化

依次用 5mL 正己烷、5mL 甲醇和 5mL 水以 5mL/min 的速度活化 HLB 固相萃取柱。取水样 500mL,用盐酸或氢氧化钠溶液调整 pH 为 7 左右,加入 20mL 甲醇摇匀。以 5mL/min 的速度经 HLB 固相萃取小柱富集后,再用 10mL 水淋洗固相萃取柱。

在 25 psi 的氮气压力下吹干固相萃取柱 30min, 然后用 10mL 正己烷+丙酮 (3:1) 以 2.0mL/min 的速度洗脱,洗脱液经无水硫酸钠除水后用正己烷+丙酮 (3:1) 定容至 10mL,供 GC/ECD 分析。详细步骤见图-1。

命令	溶剂	排出	流速 (mL/min)	体积 (mL)	时间 (min)
活化	正己烷	废溶	5	5	
活化	甲醇	废溶	5	5	
活化	水	废水	5	10	
正置上样		废水	5	540	
淋洗	水	废水	5	10	
气推		废水	80	20	
干燥	氮气			30	1500
清洗注射泵	正己烷丙酮3:1			5	
洗脱	正己烷丙酮3:1	收集	1	10	
气推		收集	10	10	
结束					

图-1 ASPE Ultra 06 水中硝基苯类化合物固相萃取方法

3. 检测条件

气相色谱-质谱联用条件

检测器	ECD
进样口温度	250 ℃
程序升温	50℃保持 1min,以 10℃/min 升温到 100℃,再以 5℃/min 升温到 160℃,再以 30℃
	/min 升温到 250℃,保持 4min。
检测器温度	300℃
载气流速度	20mL/min
尾吹气流量	60mL/min
进样方式	不分流
进样量	1μL

色谱图

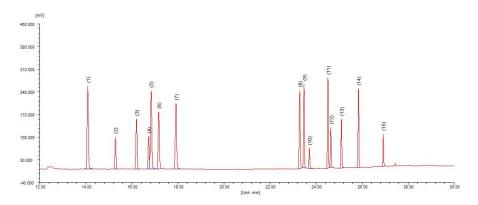


图-2 15 种硝基苯类化合物色谱图(100µg/L)

4. 方法可行性验证

为了验证该方法的回收率,本实验向纯净水 (500mL)中加入硝基苯类化合物混标 (100μg/L, 10μL)进行加标回收验证 (n=3),实验结果如表-1

所示。15 种硝基苯类化合物的回收率均在70.4-105.3%之间,RSD值小于10.0%,满足标准对加标回收率的要求。

编号	化合物名称	R ₁ (%)	R ₂ (%)	R ₃ (%)	Avg (%)	RSD (%)
1	硝基苯	71.66	70.35	77.34	73.12	5.08
2	邻-硝基甲苯	81.45	88.76	85.45	85.22	4.30
3	间-硝基甲苯	80.70	83.43	89.71	84.61	5.46
4	对-硝基甲苯	83.50	74.40	79.35	79.08	5.76
5	间-硝基氯苯	74.78	78.96	80.91	78.22	4.00
6	对-硝基氯苯	83.45	88.16	83.35	84.99	3.23
7	邻-硝基氯苯	83.44	89.56	86.36	86.45	3.54
8	对-二硝基苯	95.67	90.91	91.33	92.64	2.84
9	间-二硝基苯	82.25	85.26	82.70	83.40	1.95
10	邻-二硝基苯	84.19	80.45	87.10	83.91	3.97
11	2,6-二硝基甲苯	83.89	89.54	84.73	86.05	3.54
12	2,4-二硝基甲苯	83.35	95.70	96.60	91.88	8.06
13	3,4-二硝基甲苯	83.82	88.55	85.26	85.88	2.82
14	2,4-二硝基氯苯	105.26	102.62	97.36	101.75	3.95
15	2, 4, 6-三硝基甲苯	83.18	85.92	89.36	86.15	3.59

表-1 15 种硝基苯的加标回收率及 RSD 值

5. 结果与讨论

由于硝基苯类化合物水溶性较差,因此需要在水样中加入一定量的甲醇促进其溶解,有助于提高回收率。

若出现回收率较差的情况可用洗脱液清洗样 品瓶壁,脱水干燥后与洗脱液合并,然后氮吹至小于 10mL 再定容。

6. 总结

标准曲线的配制使用睿科 AP 200 全自动液体 样品处理工作站,可实现混标制备、标准曲线制备、 样品添加和分液等液体样品处理功能,全程无需人 员值守。

本实验采用睿科ASPE Ultra 06全自动固相萃

仪取得了优异的回收率和RSD结果,因为睿科全自 动固相萃取仪采用精密的注射泵来控制活化和洗 脱的体积,通过正压进行活化、上样、洗脱等步骤, 流速稳定可控,从而保证了比较理想的准确度和精 密度。

全自动液体样品处理工作站 标曲配制

全自动固相萃取仪 净化

智能化、自动化实验室整体解决方案

网址: www.raykol.com 电话: 400-885-1816 邮箱: info@raykol.com

